
Properties making a chaotic system a good pseudo random number generator

Massimo Falcioni, Luigi Palatella, and Simone Pigolotti
Dipartimento di Fisica and Center for Statistical Mechanics and Complexity–INFM, Università di Roma ”La Sapienza,”

P.le A. Moro 2, Rome 00185, Italy

Angelo Vulpiani
Dipartimento di Fisica and Center for Statistical Mechanics and Complexity–INFM, Università di Roma ”La Sapienza,” P.le A. Moro 2,

Rome 00185, Italy and INFN, Sezione di Roma “La Sapienza,”
P.le A. Moro 2, Rome 00185, Italy

�Received 2 March 2005; published 29 July 2005�

We discuss the properties making a deterministic algorithm suitable to generate a pseudo random sequence
of numbers: high value of Kolmogorov-Sinai entropy, high dimensionality of the parent dynamical system, and
very large period of the generated sequence. We propose the multidimensional Anosov symplectic �cat� map as
a pseudo random number generator. We show what chaotic features of this map are useful for generating
pseudo random numbers and investigate numerically which of them survive in the discrete state version of the
map. Testing and comparisons with other generators are performed.
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I. INTRODUCTION

In most scientific uses of numerical computations, e.g.,
Monte Carlo simulations and molecular dynamics, it is nec-
essary to have a series of independent, identically distributed
�i.i.d.� continuous random variables x�1� , x�2� ,… ,x�n� with
assigned single variable probability density function �PDF�
P(x�i�). Of course, it is enough to have i.i.d. random vari-
ables �x�t�� uniformly distributed in the interval �0,1�, since a
suitable change of variable y=g�x� may generate numbers

�y�i�� with any PDF P̃�y�.
Let us call a process producing i.i.d. variables uniformly

distributed in �0,1� a perfect random number generator
�RNG�. One can produce a perfect RNG only using nonde-
terministic physical phenomena, e.g., the decay of radioac-
tive nuclei or the arrival on a detector of cosmic rays.

A more practical way is to use a computer that produces a
“random-looking” sequence of numbers, by means of a re-
cursive rule. Let us call an algorithm designed to mimic a
random sequence on a computer a pseudo random number
generator �PRNG�. This issue is far from being trivial; in Von
Neumann’s words: “Anyone who considers arithmetical
methods of producing random digits is, of course, in a state
of sin” �1�. The two unavoidable problems are the following:
�a� numerical algorithms are deterministic; �b� they deal with
discrete numbers.

The limitations arising from these properties can be ana-
lyzed using the language and the tools of dynamical systems
theory. In the following, we anticipate how these remarks
translate in this framework and the main issues of the en-
tropic characterization of PRNG’s �these issues are discussed
in detail in Sec. II�.

�a1� Since the algorithm is deterministic, the
Kolmogorov-Sinai �KS� entropy �hKS� is finite. The sequence
�x�i�� cannot be “really random,” i.e., with an infinite KS
entropy, because the deterministic dynamical rule constrains
the outputs that are near in time and supplies us with a maxi-

mum of log2�ehKS� random bits per unit time. This limitation
would be present also in a hypothetical computer able to
work with real numbers.

�b1� Since any deterministic system with a finite number
of states is periodic, any sequence produced by an algorithm
working with discrete numbers must be periodic, possibly
after a transient: therefore, not only hKS��, but hKS=0. The
computer-implemented system can be only pseudochaotic.

First, we consider point �a�. After the seminal work of
Lorenz �2� and Hénon �3� �to mention just two of the
founders of the modern theory of chaos�, it is well estab-
lished that also deterministic systems may have a time evo-
lution that appears rather “irregular” with the typical features
of genuine random processes. This evidence opened a debate
on the possibility of distinguishing between noisy and cha-
otic deterministic dynamics. Following the work of Takens
�4�, so-called embedding techniques have been developed to
extract qualitative and quantitative information from a time
series. The initial enthusiasm was because the use of the
embedding method �via delayed coordinates� allows, at least
in principle, the determination of quantities like dimensions,
hKS, and Lyapunov exponents. People believed that, after de-
termining the KS entropy of a data sequence, one would
know the true nature �deterministic or stochastic� of the law
generating the series. It is now rather clear that there are
several limitations in the use of this technique �5�; for in-
stance, the number of points necessary for the phase-space
reconstruction increases exponentially with the dimension of
the system �6�. Thus, due to the finiteness of the data sets, it
is not possible to perform an entropic analysis with an arbi-
trarily fine resolution, i.e., to compute the � entropy h��� for
very small values of �. This fact severely restricts the possi-
bility of distinguishing between signals generated by differ-
ent rules, such as regular �high dimensional� systems, deter-
ministic chaotic systems, and genuine stochastic processes.
Although the above result may appear negative, it allows a
pragmatic classification of the stochastic or chaotic feature of
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the signal, according to the dependence of the � entropy on �,
and this yields some freedom in modeling systems �7�. As a
relevant example of a representation of a deterministic sys-
tem in term of stochastic processes, we mention fully devel-
oped turbulence �8�. Turbulent systems are high dimensional
deterministic chaotic systems and therefore h����hKS for �
��c, where �c→0 as the Reynolds number Re→�, while
h�����−� for ���c. The fact that in certain stochastic pro-
cesses h�����−� can be useful for modeling purposes; for
example, in so-called synthetic turbulence, one introduces
suitable multiaffine stochastic processes with the correct
scaling properties of the fully developed turbulence.

In this paper we want to discuss the opposite strategy, i.e.,
mimicking noise with deterministic chaotic systems. Let us
summarize the starting points of our approach to using a
deterministic chaotic system as a PRNG.

�1� Since in any deterministic system h����hKS for
���c with �ln �c��−hKS, one should work with a very large
hKS �9�. In this way the true �deterministic� nature of the
PRNG becomes apparent only at a very high resolution.

�2� The outputs �x�t�� of a perfect RNG, when observed
at resolution �, supply log2�1/���h��� random bits per itera-
tion. In order to observe the behavior h���� ln�1/�� for
���c in a deterministic algorithm, it is necessary that the
time correlation is very weak. We will discuss how this prop-
erty may be achieved by taking as output a single variable of
a high dimensional chaotic system.

It is not difficult to satisfy point �1�, while request �2� is
less obvious. Anosov systems �10� are natural candidates to
fulfill it, having invariant stationary measure and very strong
chaotic properties.

A third point has to be added, dealing with the problem
�b� and its consequence �b1�.

Up to here we were considering the chaotic properties of
systems with continuous phase space. Quantities like hKS and
the � entropy have an asymptotic nature, i.e., they are related
to large time behavior. However, there are situations where
the system is, strictly speaking, nonchaotic �hKS=0� but its
features appear irregular to a certain extent. This property
�denoted by the term pseudochaos �11–13�� is basically due
to the presence of long transient effects �14�.

As noted above, the use of a computer discretizes the
phase space of a dynamical system, canceling �at least� its
asymptotic chaotic properties. However, if the period of the
realized sequence is long enough, the effects related to points
�1� and �2� reasonably survive as a chaotic transient. Accord-
ing to this observation, we add a third request.

�3� The period of the series generated by the computer
�i.e., with a state discretization of the deterministic system�
must be very large.

Point �3� is really tough: as far as we know, for a generic
deterministic system with M discrete states, there are no
general methods to determine a priori the length of the pe-
riodic orbits. A nice result, based on probabilistic consider-
ations, suggests that the period T�M1/2 �16�, although
strong fluctuations are present. The use of high dimensional
systems may be a natural solution also for this problem:
denoting by M the number of states along each of the d
dimensions, the typical period T�Md/2 grows very fast on
increasing M and d.

Whatever the mechanism for producing the pseudochaotic
transient, the mere fact that the sequence is periodic implies
that it is possible to obtain equidistributed words only up to
a length m̄=O�ln T�. Thus, long time correlations among out-
puts of a generator cannot be detected by the standard en-
tropic analysis. We will show that a high dimensional chaotic
system provides outputs which are not correlated even look-
ing at time delays greater than m̄. In particular we will dis-
cuss the connection between correlation functions and the
spectral test for random sequences �17–19� showing that the
outputs of the high dimensional cat map have zero n-point
correlation functions, when n is less than or equal to the
dimensions of the map.

In Sec. II, we describe the entropic properties of PRNGs
currently used, underlying both the mechanisms involved in
PRNGs. In Sec. III the algorithms used to test the generators
are described. In Sec. IV we study the properties of the mul-
tidimensional Arnol’d cat map and in Sec. V we propose its
discrete version as a PRNG. Section VI is devoted to con-
clusions and perspectives.

II. ENTROPY AND GOOD PRNGS

First of all, we briefly recall some basic notions of the �
entropy �13�. Consider the variable x�t��Rd representing the
state of a d-dimensional system, and introduce the new vari-
able

y�m��t� = „x�t�,x�t + 1�,…,x�t + m − 1�… � Rmd. �1�

Of course, y�m� corresponds to a trajectory in a time interval
m. Then, the phase space is partitioned into cells of linear
size � in each of the d directions. Since the region where a
bounded trajectory evolves contains a finite numbers of cells,
each y�m��t� defined in Eq. �1� can be coded into a word of
length m out of a finite alphabet:

y�m��t� → W�
�m��t� = „i��,t�,i��,t + 1�,…,i��,t + m − 1�…

�2�

where i�� , t+ j� labels the � cell containing x�t+ j�. Assuming
that the sequence is stationary and ergodic, from the time
evolution of y�m��t� the probabilities P��W�

�m��� are computed,
and one defines the block entropies of size �:

Hm��� = − 	
�W�

�m��

P�W�
�m��ln�P�W�

�m��� . �3�

Finally one introduces the � entropy h���:

h��� = lim
m→�

hm��� �4�

where hm���=Hm+1���−Hm��� represents the �-block entropy
growth at word length m. In a rigorous approach, all parti-
tions into elements of size smaller than � should be taken
into account, and then h��� is defined as the infimum over all
these partitions �20�. The KS entropy can be identified as the
limit �→0:

In a deterministic chaotic system, one has hKS��, in a
regular motion hKS=0, while for a random process with con-
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tinuous states hKS=�. For some stochastic processes, it is
possible to give an explicit expression for h��� �21�. For
instance, for a stationary Gaussian process with spectrum
S�	��	−�1+2�� with 0���1 one has

h��� � �−1/� �6�

while for i.i.d. variables whose PDF is continuous in a
bounded domain �e.g., independently distributed variables in
�0,1�� one has

h��� � ln
1

�
� . �7�

Of course, leaving aside the problem of the periodicity in-
duced by the discrete nature of the states, a PRNG is good
when its hKS is very large, such that the uncertainty on the
“next” outcome is larger and the deterministic constraints
appear on scales smaller than an �c defined by ��c�d�e−hKS.

On the other hand, in data analysis, the space where the
state vector x exists is unknown and typically in experiments
only a scalar variable u�t� is measured. Therefore, in order to
reconstruct the original phase space, one uses the vector

y�m��t� = „u�t�,u�t + 1�,…,u�t + m − 1�… � Rm; �8�

that is another way to coarse-grain the phase space. In this
case, i.e., looking only at one variable, the maximum scale
where the Kolmogorov-Sinai entropy may be revealed is
given by �c1�e−hKS, which is much smaller than �c, for large
d �9�. Moreover, the single-variable word length that is nec-
essary to consider, in order to detect hKS, must be greater
than d. This effect is harmful from the perspective of data
analysis, but is welcome here.

We also note that in any series of finite length T, it is not
possible to have a good statistics of m words at resolution �
if T�emh���. Therefore, for almost all the practical aims, i.e.,
for finite � and finite size of the sequence, a chaotic PRNG
with very high hKS has entropic properties indistinguishable
from those of a perfect RNG.

A. High entropy PRNG

Several PRNGs are indeed discrete state versions of high
entropic dynamical systems. A popular example is the mul-
tiplicative congruential method:

z�t + 1� = az�t� mod M , �9�

where z�t�, a, and M are integers, with M 
a
1. In the
following the term “map” will denote a dynamical system
with continuous state space, and the term “automaton” a sys-
tem with discrete state space �we always assume a discrete
time�. To avoid confusion, we will use the symbols
z�t� ,w�t� ,z�t� ,w�t� only for discrete dynamical variables
�also vectorial� and x�t� ,y�t� ,x�t� ,y�t� for real dynamical
variables. Equation �9� corresponds to the chaotic map

x�t + 1� = ax�t� mod 1 �10�

where x�t�=z�t� /M. It is easy to see that the system �10� has
a uniform invariant PDF in �0,1� and hKS=ln a. Therefore, by
only looking at ���c�1/a, one can capture the determinis-
tic nature of the PRNG �9�.

It is worthwhile to stress that the chaotic features of the
automaton are apparent only if one observes the system �9�
after a coarse-graining procedure, namely, with �
1/M. Be-
low this level of observation, the system keeps a loose trace
of the chaotic features of its continuous precursor and, at the
maximal resolution, at the first time step the block entropy
already assumes its maximum value Hm�1/M�� ln T for all
m�1 independently on the value of hKS. This happens be-
cause we are observing the complete state of the �one-
dimensional� automaton and suggests again that a suitable
attitude is to extract partial information from high dimen-
sional systems.

In the next subsection we show an alternative way, based
on the high dimension effect, to produce random number �up
to a given word length� with an automaton, even at the finest
resolution achievable.

B. High dimension PRNG

It is known that nonchaotic high dimensional systems
may display a long irregular regime as a transient effect �14�.
In this subsection, we show that, with a proper use of a
transient irregular behavior, also systems with a moderate
hKS may successfully generate pseudo random sequences: in
these cases, one observes a transient in the block � entropies
Hn���, characterized by a maximal �or almost maximal�
value of the slope Hn��� /n, and then a crossover to a regime
with the slope of the true hKS of the system.

The most used class of PRNGs using this property are the
so-called lagged Fibonacci generators �15�, which corre-
spond to the following map:

x�t� = ax�t − �1� + bx�t − �2� mod 1, �11�

where a and b are O�1� and �1��2.
Notice that Eq. �11� can be written in the form

y�t� = Fy�t − 1� �12�

where F is a �2�2 matrix of the form

F =
0 … a … b

1 0 0 … 0

0 1 0 … 0

… … … … …
0 … … 1 0

� �13�

showing explicitly that the phase space of �11� has dimension
�2. It is easy to prove that this system is chaotic for each
value of a ,b�N, with a ,b�0. The KS entropy does not
depend on �1 and �2 and is of the order �ln�ab�; this means
that to obtain high values of hKS we are forced to use large
values of a ,b; nevertheless, the lagged Fibonacci generators
are used with a=b=1. For these values of the parameters
e−hKS �0.618 and �c1 is not small. This implies that the de-
terminism of the system should be detectable also with a
large graining. Despite these considerations, these generators
work rather well: the reason is that the m words, built up by
a single variable �y1� of the �2-dimensional system �12�, have
the maximal allowed block entropy, Hm���=m ln�1/��, for
m��2, so that
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Hm��� � �m ln
1

�
� for m � �2,

�2ln
1

�
� + hKS�m − �2� for m � �2.� �14�

Equation �14� has the following interpretation: though the
“true” hKS is small, it can be computed only for a very large
value of m. Indeed, by observing the one-variable m words,
which corresponds to an embedding procedure, before cap-
turing the dynamical entropy one has to realize that the sys-
tem has dimension �2, and this happens only for words
longer than �2. Figure 1 shows Hm��� for �1=2 ,�2=5, and
different values of �.

The importance of the transient behavior of Hm has been
underlined by Grassberger �22� who proposed another quan-
tity beyond the KS entropy: the “effective measure of com-
plexity,” namely,

C = 	
m=1

�

m�hm−1 − hm� . �15�

From the above definiton, it follows that for large m, the
block entropies grow as

Hm � C + m hKS. �16�

For trivial processes, e.g., for Bernoulli schemes or Markov
chain of order 1, C=0, and hKS�0, while in a periodic se-
quence hKS=0 and C� ln�T�. In the case of Fibonacci map,
for small �,

C = �2�ln
1

�
� − hKS� � �2 ln
1

�
� . �17�

For large �2 �usually values O�102� are used� C is so huge
that only an extremely long sequence of the order exp��2�
�likely outside the capabilities of modern computers� may
reveal that that the “true” KS entropy is small.

Let us now discuss the behavior of the discrete Fibonacci
generator

z�t� = az�t − �1� + bz�t − �2� mod M , �18�

where z�t�� �0,M −1� and M 
�2. The parameters �1, �2,
and M are chosen in order to have a period as long as pos-
sible. Number-theoretical arguments �19� allow one to
choose these parameters such that the period of the orbit is
maximum T=M�2 −1.

When the period is maximum, for ��1/M one has

Hm��� � �m ln
1

�
� for m � �2,

�2 ln
1

�
� + hKS�m − �2� for �2 � m � m*,

�2 ln�M� for m � m*,
�
�19�

where

m* =
�2

hKS
�ln
1

�
� − ln M + hKS� . �20�

When �=1/M we have m*=�2, the second regime in Eq. �19�
disappears, and the block entropy behavior is independent of
hKS. Still, as for the continuous case, if �2 is large one ob-
serves only the pseudochaotic transient

Hm��� � m ln
1

�
� . �21�

Summarizing, systems with high values of hKS or with
high dimension produce sequences having entropic proper-
ties rather close to those of a perfect RNG, for two different
reasons. In the first case, the large hKS allows one to use a
small � �but large enough to achieve a proper coarse grain-
ing�: in such a way, the � entropy coincides with that of a
perfect RNG. In the second case, the high dimensionality of
the system prevents the entropic analysis from revealing the
asymptotic value of hKS before the end of a long transient
behavior mimicking a complete random system.

In conclusion, a deterministic PRNG has good entropic
properties for long �but finite� sequences if hKS or C are
large. In Sec. IV we will propose a multidimensional cat map
as a PRNG having both these properties.

III. TESTS FOR PRNGS

Several techniques have been developed in order to test
“how random” is a given sequence of numbers. These algo-
rithms are available in easy-to-use software packages collect-
ing dozens of different tests, like, for example, the DIEHARD

�23� and the NIST �24� batteries. Many of them compute the
frequency of some words f(z�j� ,z�j+1� ,… ,z�j+n�) made up
of n consecutive outputs of the generator and compare it to
the theoretical probability in the random case. Examples are
the frequency and block-frequency tests �computing f(z�j�),
i.e., m=1�, the poker test looking for words with m=5 cor-
responding to the poker hands �e.g., full house 00011; four a
kind 00001�, and template tests checking the occurrences of
some ��102� words with length m=10–12.

FIG. 1. The � block entropy for the Fibonacci map with
�1=2,�2=5,a=b=1, and different values of �. The change of the
slope from ln�1/�� to hKS is clearly visible for m=�2=5.
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It is worth stressing that all these benchmarks are auto-
matically passed if the block � entropy, is maximal for words
of length m, namely,

Hm��� = m ln�M� �22�

with �=1/M where M is the number of symbols produced by
the generator. When Hm is maximal, it is impossible to dis-
tinguish the output from a truly random sequence by looking
only at m consecutive symbols. The reason for introducing
many tests, instead of looking only at the entropy, is that a
little departure from a constant word frequency implies a
correction in the entropy that is only quadratic in the devia-
tion �this is a simple consequence of the fact that the value of
the entropy in Eq. �22� is the maximum achievable�. Thus, it
is really difficult to numerically observe imbalances in the
frequency of some specific words by studying only the block
entropies.

A. The spectral test

The entropic analysis is a very powerful tool from a the-
oretical point of view but it presents a major limitation: in a
phase space with a finite number of states the block entropy
cannot be larger than ln T, where T is the period of the orbit.
This fact essentially fixes an upper bound on the number of
possible equidistributed words and on their length. Even with
the longest periods available in currently used algorithms,
the bound on the length is of order 102–103. On the other
hand, computer simulations often necessitate a large amount
of random numbers, and long-term relationships among
these numbers can be sources of hard-to-discover biases
�26–28�. Therefore, less severe tests than the entropic one are
needed. One can ask that the correlations among different
outputs �or, more generally, among different functions of the
outputs� vanish even when the outputs are at a time distance
greater than the scale where Eq. �22� ensures the equidistri-
bution of the words. On this time scale, numbers should
appear random, as far as one is interested in statistical ob-
servables, even if, looking at the whole sequence, later num-
bers are completely determined by previous ones. Indeed,
according to the entropic analysis, the knowledge of approxi-
mately ln T consecutive outputs permits one to determine
exactly the discrete starting condition of the system and con-
sequently to predict the whole sequence, removing any ran-
domness from it.

The main tool to analyze the property of correlation func-
tions is the spectral test. We start by defining the frequency
f(z�t1� ,… ,z�tn�) of the word (z�t1� ,… ,z�tn�) as we did for
the Kolmogorov entropy, where now the ti’s are generic
times and the z�ti�’s are not in general consecutive outputs.
The spectral test is the multidimensional Fourier transform
of f(z�t1� ,… ,z�tn�)

f̂�s1,s2,…,sn� =�exp
2�i

M
	

j

sjz�tj��� , �23�

where sj � �0,M −1� , M is the number of the discrete states,
and �¯� denotes the average over the trajectory. For true
random numbers

f̂�s1,s2,…,sn� = �s1,0�s2,0 ¯ �sn,0 �24�

for any choice of n and of the time lags tis. Values of the

function f̂�s1 ,s2 ,… ,sn� significantly different from 0 denote
wave vectors of probability density fluctuations in the lattice
z�t1� , z�t2� ,… ,z�tn�. These fluctuations can be safely ne-
glected only when their characteristic length scale �which we
assume to be the inverse of the modulus of the wave vector�
is much smaller than the maximum precision one is inter-
ested in. Many generators �i.e., the linear congruential class
of generators� produce numbers that “fall mainly in planes”
�17–19�, and the presence of these planes is detected by the
spectral test.

The importance of the spectral test is related to the fact
that analytical or semianalytical methods �19,29� allow for a
fast calculation for simple systems. Furthermore, since any
L2 function can be written as a Fourier series, condition �24�
implies the vanishing of any correlation of up to n functions
of time-delayed variables:

�g1„z�t1�…g2„z�t2�… ¯ gn„z�tn�…�

= �g1„z�t1�…��g2„z�t2�…� ¯ �gn„z�tn�…� �25�

for every gi�L2.

IV. THE CAT MAP AS A RANDOM NUMBER
GENERATOR

Recently some authors �30� have proposed the use of the
Arnol’d cat map as a PRNG. We will briefly recall the prop-
erties of this map and then propose a multidimensional ver-
sion with N coupled maps, showing that this generalization
gives rise to very good statistical properties. In particular, it
has both the properties analyzed in Sec. II giving maximal �
entropy, namely, it possesses a high value of hKS and it is a
high dimensional system. We will see that this system has
also very good properties from the point of view of correla-
tion functions.

The two-dimensional Arnol’d cat map �31� is a symplectic
automorphism on a torus satisfying the properties of Anosov
systems �32�, namely, it is everywhere hyperbolic and has a
positive Kolmogorov entropy. The map reads


x�

y�
� = 
1 a

b 1 + ab
�
x

y
� mod 1, �26�

where a ,b�N. The standard example given by Arnol’d is
obtained with a=b=1.

The multidimensional generalization can be written in the
following way:


x�

y�
� = M
x

y
� mod 1, �27�

with

M = 
 I A

B I + BA
� �28�

where M is a 2N2N matrix, x ,y�RN , I is the NN iden-
tity matrix, and A , B are symmetric NN matrices with
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natural entries in order to obtain a continuous mapping. It is
easy to see that the evolution law given by Eq. �28� is sym-
plectic, indeed one can write Eqs. �27� and �28� as a canoni-
cal transformation

x =
�S�x�,y�

�y
, y� =

�S�x�,y�
�x�

�29�

where the generating function is given by

S�x�,y� = 	
j=1

N

xj�yj −
1

2 	
j,k=1

N

�yjAjkyk + xj�Bjkxk�� . �30�

It can be shown that when Tr�M��2N the map �27� is an
Anosov system with uniform invariant measure. The output
of our generator will be the first component of the vector x.
The condition N�1 raises the Kolmogorov entropy, cancels
the correlation, and increases the length of the periodic orbits
�in the discretized case�. We will describe in detail these
three aspects in the following.

First of all, according to the Pesin identity, the Kolmog-
orov entropy of this system is equal to the sum of the posi-
tive Lyapunov exponents:

hKS = 	
�i�0

�i. �31�

A d-dimensional hyperbolic symplectic system possesses ex-
actly d /2 positive Lyapunov exponents; if they are of the
same order of magnitude, the Kolmogorov entropy grows
proportionally to the number of dimensions. Notice that the
Kolmogorov entropy may also be raised by simply taking the
matrix A ,B with very large entries. This method, however,
produces only an increase in the entropy which is logarith-
mic in the size of the entries. Of course for the system �27�
and �28� the �i are easily obtained from the eigenvalues �i of
M :�i=ln��i�.

For the two-dimensional �2D� cat map we compute an
approximate value of the � entropy, obtained as H4���
−H3��� varying � and the parameters a ,b. In order to high-
light the practical limitations of the PRNG we study the dis-
crete version of Eq. �26� with M =220 possible values of x
and y �see the next section for details�.

As one can observe in Fig. 2, both the standard problems
of PRNGs appear. Indeed the figure shows that on decreasing
the value of � we observe a “plateau” around the value of
hKS. At lower values of �, there is an abrupt decrease due to
the periodic nature of the map. Nevertheless it seems that if
we use the map as a generator of a number of symbols �1/�
with ���c we are, with a good approximation, near the
value corresponding to a theoretical RNG, given by h���
=−ln���. Let us note that, when hKS is large enough �curves
for a=5, b=7, hKS�3.61 and a=11, b=17, hKS�5.24�, be-
cause of the limited number of allowed states, one does not
observe the plateau h����hKS.

Let us study the properties of the time correlation of the
outputs. The following result holds. Let e1 be the
2N-dimensional vector �1,0,0,…�. If the vectors
�MT�t1e1 , �MT�t2e1 ,… , �MT�t2Ne1 are linearly independent,
then one has

�exp
2�i	
j=1

2N

sjx1�tj��� = �s1,0�s2,0 ¯ �s2N,0. �32�

Furthermore, the independence of the vectors is ensured for
any choice of the time delays tis if the matrix M has real,
positive, and nondegenerate eigenvalues and the vector e1
has a nonzero component on all the eigenvectors. For the
proof see the Appendix.

The practical meaning of this result is the following: we
observe only the variable x1, keeping the remaining 2N−1
variables hidden, and we study its correlation functions. In
this way correlation functions involving up to 2N different
times vanish, i.e., Eq. �25� holds for n�2N, because the
contributions due to different values of the hidden variables
cancel out in the averaging.

The result of Eq. �32� can be taken as one of the strongest
characterizations of a finite random sequence: as we said,
word equidistribution can hold only up to a value of n̄
� ln T where T is the length of the sequence. Indeed, some
authors �25� define as a random sequence of length T one
containing all the possible words up to length n̄. On the other
hand, Eq. �32� is a generalization of that condition: for con-
secutive time delays tj = j the two properties are equivalent,
while for generic values of the tj it ensures long-range inde-
pendence of the outputs, without asking for an exponential
number of equiprobable words in the sequence.

The validity of the property �32� in the discrete case will
be the subject of careful analysis in the following section.
Here, we just point out that, even in the continuous case, this
property is not shared by some of the dynamical systems
used for generating random numbers. For example, let us
recall the Fibonacci map

x�t� = ax�t − �1� + bx�t − �2� mod 1 �33�

with a ,b�N with a, b�0 and �2��1. It is straightforward
to show that the correlation function

FIG. 2. H4���−H3��� for the 2D cat map of Eq. �26� with M
=220 and different values of a ,b as a function of �. The horizontal
lines indicate the hKS values.
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�exp�2�i�s1x�t� + s2x�t − �1� + s3x�t − �2���� �34�

is not equal to zero for the vector s= �s1 ,s2 ,s3�= �1,−a ,−b�.
Thus, even if the dimension of the phase space �2 may be
very high, the three-point correlation function is sufficient to
unveil the deterministic nature of the system.

Therefore, when the dimension of the cat map, 2N, is
equal to the dimension of the Fibonacci generator �2, both
the systems guarantee that words of length 2N are equidis-
tributed. However, the main advantage of the multidimen-
sional cat map is that also the words made up of 2N noncon-
secutive symbols are equidistributed. This property does not
hold for Fibonacci generators and in some case this can lead
to serious problems. A famous example is the “Ferrenberg
affair” �26�: persistence in binary Fibonacci generators gives
misleading results in Monte Carlo simulations. This problem
is well analyzed in the framework of information theory in
�27�.

In the next section we numerically study the discrete ver-
sion of the multidimensional cat map and we check whether
the good statistical properties of the system survive in this
case.

V. NUMERICAL ANALYSIS AND TEST OF THE
MULTIDIMENSIONAL CAT AUTOMATON

A digital computer cannot handle real numbers. What a
computer really calculates is a finite-digit dynamics that can
be represented as a dynamics on integers. We will consider in
the following the multidimensional cat automaton, namely


 z�

w�
� = 
 I A

B I + BA
�
 z

w
� mod M , �35�

where, as usual, A , B have natural entries zi ,wi
� �0,1 ,… ,M −1�.

The first problem in passing from the continuous to the
discrete case is that the system has a finite number of state
M2N and consequently it must be periodic and it is no longer
truly chaotic. The optimal condition is that there is only one
orbit covering all the states but the origin z=w=0 �which is
a fixed point� thus obtaining a period T=M2N−1. A peculiar
feature of cat maps is that periodic orbits of the continuum
system have rational coordinates �33�. Consequently, the or-
bits of the discretized version of the map are completely
equivalent to periodic orbits of the continuous system with
coordinates zi /M , wi /M. As a corollary, the map being in-
vertible, periodic orbits do not have any transient: every state
is recurrent.

Unfortunately the cat map has typically many orbits, and
the great majority of them are of the same length. A theoret-
ical analysis of these orbits has been made �33� in the two-
dimensional case. For generic dynamical system, arguments
based on random maps suggest that the average length of the
orbits T should be roughly the square root of the total num-
ber of states �3�: in our case T�MN. This scaling have been
numerically observed in typical chaotic dynamical systems
�34�. In Fig. 3, we show the length T of the orbits as a
function of M and N. Despite the large fluctuations, one re-
trieves the expected qualitative scaling and, more impor-

tantly, the periods seem to be independent of the initial con-
dition; this suggests that several symmetry operations exist
mapping one orbit into another one of the same length. Since
the choice of M is critical in determining the length of the
orbits, we restrict ourselves to prime number values of M, in
order to avoid the presence of trivial invariant sublattices
generated by the divisors of M. Notice also that data are
plotted as a function of MN: the lengths show the correct
exponential growth with N, at least in a statistical sense. We
stress that in Fig. 3 we show the result for M not very large
��103�; from the observed behavior one can say that for
M �109 the period should be extremely large.

Unfortunately we have no theoretical control over the pe-
riod, and wild fluctuations are present when M varies; there-
fore it is better to choose a value of M ,N ,A ,B and directly
check the value of T or a lower bound. In the following we
will consider the choice N=3, M =1001400791, and

A = 1 1 1

1 3 1

1 1 5
�, B = 7 1 1

1 3 1

1 1 9
� . �36�

With these parameters, the hypothesis leading to Eq. �32�
holds; furthermore we numerically obtained T�71012,
which is a satisfying lower bound for typical simulations.

The very encouraging result we obtained for the correla-
tion functions in the continuous case is the main reason for
the use of the multidimensional cat automaton as a PRNG,
but we have to check whether the property proven in the
previous section holds also in the discrete case. The choice
of �36� satisfies the hypothesis of the theorem, namely, the
eigenvalues are all strictly positive and nondegenerate and
the vector �1, 0, 0, 0, 0, 0� has a nonzero component along all
eigenvectors.

From a general point of view there are two main technical
caveats when passing from continuous to discrete systems
concerning the theoretical spectral test. In our case, since the
orbits do not cover all the space, it is a priori impossible to

FIG. 3. The period of the orbits for the multidimensional cat
map, with different values of N, as a function of MN �only the prime
values of M are considered�. The straight lines refer to the proba-
bilistic argument T�MN.
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average on the uniform distribution as discussed in the Ap-
pendix for the continuous state case. Even if we suppose that
the orbit is sufficiently homogeneous and the value of the
average in �32� is close to that given by �A2� �see the Ap-
pendix�, condition �A4� becomes in the discrete case

	
j=1

2N

sjm1k
�tj� = 0 mod M ∀ k = 1,…,2N , �37�

since it is sufficient to consider vectors �s1 ,s2 ,… ,s2N� in the
first Brillouin zone.

These two reasons prevent us from performing the spec-
tral test using the nice theoretical arguments used for other
kinds of generators �19,35� and force us to use numerical
simulation. This constitutes a hard computational task and
we perform the test for low values of M and study products
of the form

f̂�s1,s2� = �exp
2�i

M
s1z1�t1��exp
2�i

M
s2z1�t2��� .

�38�

We use M =1031 and N=3 obtaining a period T=274,243,
921 and letting s1 ,s2� �0,M −1�. Using a fast Fourier trans-
form numerical algorithm we check up to time delays t2

− t1�250 that for all values but s1=s2=0 , � f̂�s1 ,s2���10−5.
With a lower number of states, M =127, T=1, 016, 188, we
compute also the three-point spectral test, obtaining always
values compatible with the inverse of the square root of the
period T. This suggests that the periodic orbits look like a
finite statistical sample of the continuum equilibrium distri-
bution, as long as one studies only few-point correlation
functions. An important remark is that a solution
�s1

* ,s2
* ,… ,s2N

* � of the diophantine Eq. �37� implies that

f̂�s1
* ,s2

* ,… ,s2N
* �=1 independently of the stationary distribu-

tion and, consequently, of the period T. This means that the
low values observed in the numerical spectral test exclude
the possibility of a solution in Eq. �37�.

In order to look for any other possible bias, we also apply
the NIST battery to test our multidimensional cat automaton,
with the parameters of Eq. �36�, for generating 103 binary
strings of 0’s and 1’s of length 106; all tests performed with
the recommended parameters have been passed.

VI. CONCLUSIONS

In this paper we show how, using properties of high di-
mensional deterministic chaotic systems, it is possible to
generate a good approximation of a random sequence, in
spite of unavoidable constraints of deterministic algorithms
running on digital computers.

Summarizing, we have two possible mechanisms to ob-
tain good PRNGs using deterministic systems: very high KS
entropy, and “transient chaos” with a large finite-time � en-
tropy, due to the high dimensionality of the system. We pro-
pose the multidimensional cat map as a PRNG having both
these properties. Another important example of a system
with both the properties is the one proposed by Knuth �36�:
one iterates the Fibonacci generator �11� with M =231−1,

�1=37 and �2=100 �with this choice the period is extremely
large�; then the output sequence is obtained taking the vari-
able in Eq. �11� every T steps �T=1009 or 2009�. In such a
way, for words of size up to �2 �i.e., extremely huge�, the �
entropy is practically �ln�1/��, i.e., as for a perfect RNG.
Moreover, even if the simple Fibonacci generator fails the
three-point spectral test, it is harder to find a non-null vector
in the spectral test of Knuth’s generator, because of the fact
that T, �1, and �2 are relatively prime numbers. Nevertheless,
it does not seem that a general result like that of Eq. �32�
may be easily extended to this PRNG.

We suggest that the multidimensional cat map is suitable
for generating a random number sequence. The main advan-
tage if compared with other generators is the factorization of
all the n-time, correlation functions, with n�2N, due to the
high dimensionality of the system and the presence of hidden
variables. This result is rigorously true �also in the case
n=2N� in the continuous system; numerical checks show that
this property survives in the discrete case. Moreover, this
map has a large value of the KS entropy giving good en-
tropic properties at nonzero, but small, �.

A disadvantage of this method is that we cannot predict
analytically the period given the parameters or, equivalently,
write a condition on the parameters in order to obtain the
maximum period. However, probabilistic arguments �16�,
confirmed by a numerical check, show that the period in-
creases exponentially with N; therefore with a proper choice
of the parameters we achieve extremely large periods. An
analytical criterion to predict the length of the period could
pave the way to the application of multidimensional cat maps
as high quality PRNGs.
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APPENDIX

Consider the system of Eqs. �27� and �28�. In this appen-
dix we give the proof of the following proposition.

Let e1 be the 2N-dimensional vector �1,0,0…�. If the vec-
tors �MT�t1e1 , �MT�t2e1 ,… , �MT�t2Ne1 are linearly independent,
then one has

�exp
2�i	
j=1

2N

sjx1�tj��� = �s1,0�s2,0 ¯ �S2N,0. �A1�

Furthermore, the independence of the vectors is ensured for
any choice of the time delays ti if the matrix M has real,
positive, and nondegenerate eigenvalues and the vector e1
has a nonzero component on all the eigenvectors.

Proof. Since the system under study is ergodic and its
invariant measure is uniform, we can write the average in Eq.
�32� as
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� dx1 ¯ dx2N exp
2�i	
j=1

2N

sjx1�tj�� . �A2�

Here, with an abuse of notation, we call the components of
both the x and the y vectors xj, i.e., xj+N�yj , j=1,… ,N. Let
us also call the elements of the matrix Mt mjk

�t�. We can re-
write the previous expression in the following way:

� dx1 ¯ dx2N exp
2�i 	
j,k=1

2N

sjm1k
�tj�xk� . �A3�

Notice that we do not take care about the modulus since the
sj are integers and the complex exponential is periodic.
When integrating over the xi’s, the result is zero for every
value of the si’s, excluding the values that are solutions of
the linear system

	
j=1

2N

sjm1k
�tj� = 0 ∀ k = 1,…,2N �A4�

that yield 1 as a result of Eq. �A3�. Since sj =0 ∀ j is a
trivial solution for the linear system, it is sufficient to show
that this solution is unique to demonstrate Eq. �32�. In par-
ticular, by Cramer’s rule, it is sufficient to show that det G
�0, where G is the matrix of coefficients of the linear sys-
tem �A4�, namely,

gkj = m1k
�tj�. �A5�

Notice that the columns of the matrix G are constituted by
the components of the vectors �MT�tje1; this means that the
condition of having det G�0 is equivalent to requiring that
the vectors �MT�tje1 are linearly independent. This completes
the first part of the proof.

Now, we show how Eq. �A4� has always a unique solution
when the matrix M has positive and nondegenerate eigenval-
ues �k, and the vector e1 has nonzero components along all
the eigenvectors. In this case, we rewrite the matrix G in the
eigenvector basis, obtaining

det G = c1c2 ¯ c2N det
�1

t1 �1
t2 … �1

t2N

�2
t1 �2

t2 … �2
t2N

… … … …
�2N

t1 �2N
t2 … �2N

t2N
� �A6�

where ck�0 �for hypothesis� is the component of e1 along
the kth eigenvector. Notice that the ck’s are real: since the
eigenvalues are real by hypothesis, also the eigenvectors
have real components in the natural basis of R2N. The proof
is a reduction ad absurdum. Let us suppose that det G=0;
this implies that there exists a linear combination of the col-
umns satisfying

	
j

bj�k
tj = 0 ∀ k = 1,…,2N . �A7�

Eq. �A7� imples that the polynomial

P�z� � 	
j

bjx
j �A8�

has 2N distinct real positive roots since, by hypothesis, all
eigenvalues are positive and nondegenerate. Then, by Des-
cartes’ sign rule, it must have at least 2N sign changes in the
coefficients, but this is impossible, since P�z� has just 2N
terms different from 0. Thus, det G is necessarily different
from zero for any possible choice of the time delays; this
completes the proof.
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